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Abstract

Numerical modelling of coupling in acoustics in the medium-frequency range poses problems, which
remain to be solved. Indeed, in such cases, finite element methods in volumes or on boundaries generate too
large a number of degrees of freedom due to the size of the domains (the volumes or the boundaries). With
the ray method in simple convex damped cavities, it is possible to target a small number of points inside the
domain and, subsequently, to economize on calculation time, making it possible to look for spectral instead
of harmonic results. Does this still hold when damped cavities are coupled by an acoustic transmission path
or by a vibrating structure, with aural perception in view? In fact, due to inherent approximations, the ray
method is inaccurate in the presence of absorbent walls and thus in damped coupled cavities. However, an
analysis will show that a hierarchy exists among the errors arising from the rays, and finally it will appear
that only the grazing rays must be replaced by another approximation. In these conditions, the ray method
is capable of solving coupling problems in acoustics in the medium-frequency range with greater computing
speed than finite element methods.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

One method for solving harmonic linear acoustic problems consists in using the integral
representation of the Helmholtz equation. The easiest case is when certain simple integrals, the
so-called single layer, are to be calculated. To this end, the Green kernel must satisfy some
boundary conditions of the problem under study. Unfortunately, such an elementary function
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(the Green function) is rarely known analytically, if only because of the geometry of the domain
concerned. In the low-frequency range such a kernel has already been built by the finite element
method, but this method is inadequate when dealing with medium frequencies. It was thus decided
to use the image source method to obtain the Green function. Correlatively, the notion of specular
reflection with its associated reflection coefficient is accepted, although it is inaccurate within the
framework of the differential equations of linear acoustics. However, the errors induced are
important only for a limited number of rays from among all those necessary to build the solution.
With this remark in mind, it is worth asking if this method might not provide an acceptable kernel
for our purpose, i.e., to predict acoustic pressure in the medium-frequency range, with aural
perception in view. In other words, the question answered in this paper is: what are the
consequences of the approximations inherent to the ray method on the solution of a problem with
a certain degree of complexity? The motivation of the present study originates from the coupling
of two damped cavities, similar to those encountered in a car.
The comparison of the present approach with that made by other authors requires some

technical explanations which constitute the first part of the presentation, followed by the
geometrical configuration which is at the origin of the work: two acoustic cavities coupled by an
interface. The global approach to the problem, by integral representation as well as the rays
present at each step is then given. Section 4 recalls the specular reflection and the next section
presents the directivity, emphasizing its validity for the terms necessary for the calculation used in
the global approach. It will then appear that the grazing ray between source and receiver located
quite near each other on the same plane wall, is responsible for the greatest error and must be
replaced by another more appropriate approximation. In Section 7, an account is provided of the
numerical experiments carried out to observe the influence of the approximations on the final
results of a coupling problem. The reference solution comes from the finite element method as the
particular configuration chosen has a sufficiently small number of degrees of freedom. The present
study not only emphasizes the nature of the approximations inherent to the ray method but also
gives an idea of their hierarchy, as far as errors are concerned. Spectral synthesis in thirds of
octaves will show that the results obtained are quite acceptable when predictions are for aural
perception in the sense of perceived sound level (binaural perception, usually more concerned with
source localization, is sensitive to the interaural time differences added to diffractions around the
head and a more precise frequency scale probably ought to be chosen).
Finally, the paper shows that despite the absence of a rigorous method to carry out acoustic

coupling of damped cavities in the medium-frequency range, it is nevertheless possible to obtain
reasonably good results through the Green functions built by the ray method, still bearing in mind
its weaknesses. The proposed approach extends to damped non-convex domains seen as coupled
damped convex domains by identity transfer at the interfaces.

2. Considerations regarding the choice of the Green function

Flow charts followed by calculations to solve dynamic coupling problems in linear elastic media
were at the centre of a work published some years ago [1]. Where acoustics is concerned, the
operators are either in differential or integral forms. The latter case is attractive as it transforms a
domain problem into a contour problem that, in certain situations, makes resolution easier. We
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are concerned here only with the direct integral representation solved most often by the
collocation technique [2]. Mastering the global procedure and having chosen an integral
representation, the Green kernel(s) remain(s) to be chosen, in particular in the medium-frequency
range, given our objectives.
It is well known that solving a problem using the integral representation implies two parts: one

associated with the elementary solution chosen and the other consisting of a correction in the
form of contour integrals. A judicious choice of the kernel limits the correction to be made by
reducing the contour where the modifications occur and/or by working only with this simple the
so-called single layer term.
Only very particular geometries and boundary conditions lead to elementary solutions available

in analytical form, such as the closed-form solution, modal series or ray series, the coefficients of
which have a simple analytical expression. Keeping as close as possible to our preoccupation, let
us quote the paper of Lam and Hodgson [3] who deal with the radiation of a vibrating body
located inside a rectangular enclosure with absorbent walls. Here, the Green function is written as
a series of rays which satisfy the enclosure boundary conditions. This results in correction only on
the boundary of the vibrating body, but with double and single layer terms. Let us note that the
vibrating body is transparent to the rays of the elementary solution leading to some
approximations made only on the walls of the enclosure. More precisely, of the three
approximations shown in the present paper, only the specular reflection need be considered.
Except in the very few cases of particular geometries and boundary conditions, the Green

function may be obtained using numerical methods. When looking for a procedure to optimize
absorbent device locations on the wall of an enclosure, the Green function leaving only single
layer terms in the correction was built by the finite element method [4]. As already mentioned, this
method is inappropriate for the medium-frequency range, because it would lead to a very large
number of degrees of freedom inside the domain or on the contour. A ray method is a better
choice in this frequency range. It can give information at a small number of points, making it
possible to save calculation time and memory size, and subsequently to predict whole spectra at a
few points instead of the whole field for one frequency. In complex geometries, the solution
originating from a series of rays is numerical as it derives from an algorithm. Closest to our
problem of damped cavities in the medium-frequency range written through an integral
representation, the kernel of which is built by a ray method, one has to mention the work of Jean
[5] focussing on the radiation of a source inside an enclosure. The walls are equipped with damped
materials except one or a part of one made up of a vibrating panel, the velocity of which is given,
i.e., here without coupling. The elementary solution chosen here satisfies the same boundary
conditions where the walls are damped and a condition of rigid wall where it would otherwise
vibrate. The correction is then only on the yielding wall with just one single layer term. Let us
mention that the absence of coupling removes the grazing ray intervening in coupled cavities.
Although our configuration is different, if only due to the coupling, a particular point of the

method quoted above could have been followed a priori. However, at the very beginning of our
work, we opted for the Green functions that, in each of the two coupled cavities, satisfy the
boundary conditions of the problem except on the sides of the interface where they satisfy
boundary conditions of the same nature as those on the damped walls. The choice of this option
resulted from two imperatives: to limit the number of rays in building the elementary functions
and, above all, to reduce as far as possible, one of the errors inherent to the ray method. Indeed,
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let us consider only one damped cavity with a yielding wall on its contour. The kernel leading to a
single layer on the yielding wall may satisfy a rigid boundary condition there as seen above, or
also an absorbing condition. In fact, the building of the kernel by rays requires an approximation
which turns out to be quite good when the vibrating wall is large and has the same type of
boundary condition as those of the other parts of the contour. Correlatively a small vibrating
surface with rigid behaviour in the midst of damped material is an unfavourable case. Moreover,
choosing a Green function with an impedance relation on the vibrating wall of the same nature as
that on the other part of the contour, the number of rays will also remain relatively small as, for
the kernel, the cavity is totally damped. For two coupled cavities, the same arguments hold,
replacing the vibrating wall with the sides of the interface.

3. Configuration of coupled acoustic cavities and general procedure

3.1. Configuration

The question of the relevance of building a Green function by the geometrical method for a
coupled problem originated from the automobile field where noise generated in the cavity which
houses the engine radiates towards the passengers cabin through the dashboard. The generic
configuration is given in Fig. 1. Fig. 2 shows the geometry of the two cavities used to illustrate the
case numerically. They are of identical shape to save memory size and computation time when
using the finite element method to obtain the so-called reference solution. There is thus a
geometrical symmetry around the wall containing the interface. The damping acoustic behaviour
of boundaries @O1 and @O2 (which do not include the faces of the interface) is modelled with local
reaction through the impedance. Indeed, for harmonic acoustic fields, the reduced impedance is
defined by Zr ¼ p=rcvn; where p and vn are, respectively, the acoustic pressure and the normal
acoustic velocity, with the normal on the boundary directed inwards from the domain, and rc the
characteristic impedance of the air. This definition inserted into the dynamic equation of Euler
leads to the following relation satisfied at the boundaries:

rp � n ¼ �
ik

Zr

p: ð1Þ
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A point source velocity is located inside O1 at xS. It is expected that the transfer through the
interface modifies the responses of the isolated cavities. The problem can be solved globally—i.e.,
without subdomain considerations or, in other words, without the use of substructures—in which
case, the finite element method could provide the reference solution. The same solution with the
same method can also be obtained from substructure analysis when considering each domain
separately. With such a procedure the finite element method built up the Green function of each
domain in the way mentioned before. As already written, this procedure cannot be extended to the
medium-frequency range, for technical rather than conceptual reasons, which is why the solution
is sought by the ray method with integral representation, here only written on either side of the
interface.

3.2. General procedure

General flow charts associated with coupling problems in elastic media have been widely
described [1], so will only be outlined here. The method used is the boundary integral method
where the Green kernels in each cavity are such that only single layer terms intervene on the
contours.
The whole domain is made up of three media: two cavities O1 and O2 and the interface G with

its sides G1 and G2 seen from O1 and O2; respectively. The goal is to determine the acoustic
pressure in each cavity, given the source in O1:
The behaviour of the interface is described through a transfer matrix such that

p2ðG2Þ

v2nðG2Þ

( )
¼

T11 T12

T21 T22

" #
p1ðG1Þ

v1nðG1Þ

( )
;

which links the acoustic pressures and normal velocities on each side. When sides G1 and G2 are
discretized into facets, the quantities pðGÞ and vnðGÞ must be understood as vectors the
components of which are the values of p and vn on each facet.
Let us suppose that, in O1; the solution G1(x,x

0) which satisfies

HxG1ðx;x0Þ ¼ �dðx� x0Þ in O1;

G1;nxþikb1G1 ¼ 0 on @O1,G1

(

is known, where Hx is the Helmholtz differential operator with the space variable x and where
G1;nx is the normal derivative of G1(x,x

0) at point x on the boundary of O1 (the boundary of O1 is
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Fig. 2. Both cavities have the same shape to save computation size when seeking the reference solution.

T. Courtois, V. Martin / Journal of Sound and Vibration 270 (2004) 259–278 263



made up of @O1,G1). For generality, the source is supposed to be extended on the boundary of
OSCO1 and to appear in the right-hand member of the Helmholtz equation as f(x). So, when
xAO1\OS; defining the admittance b1 ¼ 1=Zr1 ; the integral representation of the Helmholtz
operator results in

p1ðxÞ ¼ �
Z
OS

G1ðx; x0Þf ðx0Þ dx0þiro
Z
G1

G1ðx;x0Þv1nðx0Þ dx0 � ikb1

Z
G1

G1ðx; x0Þ p1ðx0Þ dx0: ð2Þ

Before reaching p1 in O1 both quantities p1 and v1n have to be determined first on G1: The
discretization into facets of G1 leads classically to the matricial form

A1½ 
 p1ðG1Þ
� �

¼ f1f g þ B1½ 
 v1nðG1Þf g:

In O2 we define G2(x,x0) which satisfies

HxG2ðx;x0Þ ¼ �dðx� x0Þ in O2;

G2;nxþikb2G2 ¼ 0 on @O2,G2

(

with the above notations. Here also, the contour of O2 is made up of @O2,G2: For xAO2; the
integral representation is

p2ðxÞ ¼ þiro
Z
G2

G2ðx; x0Þv2nðx0Þ dx0 � ikb2

Z
G1

G2ðx;x0Þ p2ðx0Þ dx0 ð3Þ

with its corresponding matrix equation

A2½ 
 p2ðG2Þ
� �

¼ B2½ 
 v2nðG2Þf g:

From the matrix forms above, follows the system of four matrix equations for four unknown
vectors which must be solved to obtain the pression in O1 as well as in O2 :

A1 0 �B1 0

0 A2 0 �B2
T11 �I T12 0

T21 0 T22 �I

2
6664

3
7775

p1ðG1Þ

p2ðG2Þ

v1nðG1Þ

v2nðG2Þ

8>>><
>>>:

9>>>=
>>>;

¼

f1

0

0

0

8>>><
>>>:

9>>>=
>>>;
:

3.3. Rays present in each integral

The building of both kernels G1 and G2 requires here the image source method and thus rays.
The various types of rays needed to calculate each of the integrals are enumerated.
Let us work first with integral

R
OS

G1ðx;x0Þf ðx0Þ dx0; where OSCO1 and xAO1; x outside OS: A
point source at xS would result in G1ðx; xSÞfS; a quantity homogeneous to a pressure q(x). In
geometrical acoustics, q(x) stems from a direct ray travelling from the source at xS towards the
receiver at x, and also from all the rays reflected on the walls, arising from the image sources, all
outside the convex domain. Despite the inaccurate notion of specular reflection in the presence of
absorbent walls, Section 4 will show that the approximation of q(x) by the image source method,
in other words the construction of G1ðx;xSÞ by rays, is quite acceptable as long as the source and
the receiver are sufficiently distant from the boundaries. This remark applies to all point sources x0

in the volume integral.
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Concerning the contour integrals, several situations appear. With the discretization of side G1 of
the interface into facets G1i; the so-called collocation calculation uses the following approxima-
tion:

R
G1

G1ðx; x0Þhðx0Þ dx0C
P

i hðxiÞ
R
G1i

G1ðx;x0Þ dx0: When the receiver is located at xAO1; the
source at x0 now radiating from the wall, G1ðx;x0Þ consists of the direct ray travelling from x0

towards x and of the reflected rays emitted from the image sources of x0 against the walls. As long
as the receiver is sufficiently far from the wall G1 where the source x0 is located, the rays give a
good approximation (Section 5). At this stage in our procedure, a remark should be made.
Whatever the image source, the ray reaching the receiver originates from the source x0 on the wall.
In the case of a large number of image sources, many rays leave the source x0 on the wall to reach,
after a certain number of reflections, the receiver. It could occur that an image source might be
located on the prolongation of a wall, but in that case only a small number of rays emitted by that
image source would illuminate the receiver and thus participate in the global radiated pressure. In
other words, the particularity due to the fact that x0 is located on a wall cannot be ignored, while
that same particularity will not be taken into consideration for very few rays radiated from very
few image sources also on walls, on account of their negligible contribution to the global result.
When the receiver is closer to the wall G1; the previous approximation is no longer acceptable.

This unfortunately is what will occur in the process of determining p1 and v1n on G1 before
calculating p1 in O1 since, in that process, xAG1: When discretizing into facets, a distinction is
usually made between the case where xeG1i in

R
G1i

G1ðx; x0Þ dx0 and the case where xAG1i: The first
term is called term of interinfluence on G1; the second of autoinfluence on G1; the latter existing as
a Cauchy integral. Presently, in both cases, G1ðx; x0Þ results from a grazing ray travelling from x0

towards x and also from rays radiated from the image sources of x0 against the walls. This grazing
ray is the ray with such an error and with such a great influence on the final result that a substitute
must be found (Section 6). Here again an important remark regarding the procedure chosen
should be made. The grazing ray from x0 towards x travels a short distance, in particular in the
autoinfluence terms. It could occur by geometrical chance that an image source might be located
on the prolongation of the same wall, thus also radiating a grazing ray. However, in such a case,
the image source would be quite far from the receiver, and this grazing ray could be ignored
because, as it will be shown, its contribution to the total result is insignificant. Everything that has
been said for G1ðx; x0Þ on G1 is obviously true for G2ðx; x0Þ on G2:
The present work intends to emphasize the approximations inherent to some rays and which

subsequently lead to errors in some integrals, keeping in mind the objective of aural perception,
and eventually binaural perception [6]. However, the intention is not to make a thorough analysis
of each case encountered but to show their influence on global calculations in a coupled cavities
configuration, where a large number of rays intervene, the majority of them being ‘‘regular’’.

4. Approximations due to geometry and specular reflection

In general, geometrical acoustic methods are not intended for examining the acoustic field
everywhere in a cavity domain (only convex cavities are envisaged here; non-convex cavities come
into the framework of coupled cavities). Instead, knowing the source and making the choice of
hearing point(s), a selection is carried out within the space and the acoustic spectrum is
synthesized from the main contributing rays at the hearing point(s). Two types of approximation
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are inherent to these methods. Errors arise from the geometrical building of rays and their impacts
on the boundaries, as well as from the way the boundary conditions are considered.
Let us work with an omnidirectional source radiating a spherical wave. To take into account

the numerous reflections on the walls, the wave front is discretized. The description of the
propagation from source to receiver is two-fold [7]. On the one hand, the whole wave front is
propagated through discretization with a large number of cones, each around a central ray with a
probability of reaching the receiver. Only the central ray is considered and not the cone cross-
section itself. This procedure is called ray tracing. Various approximations arise from the cone
size: for instance, in the description of the intensity distribution in the cone and in the influence of
the impacts on cavity vertices and edges. The use of the wave front is easily accepted intuitively.
On the other hand, propagation paths between source and receiver are identified through the
notion of image sources Sj [8]. The ray bears the propagation. With this approach, chosen with
our end in view, the geometrical approximations disappear. The complexity of the rapid selection
of image sources ‘‘seen’’ from the receiver(s) grows with the complexity of the geometry.
Vorl.ander [9] has devised an algorithm of selection by using data from ray tracing. The technique
used here, not developed in the present paper, is an extension that establishes ‘‘visible’’ image
source families by a process related to the lighting of the cavity by the successive image sources.
Having adopted a geometrical method, convergence towards the exact solution is now expected

when the number of ‘‘useful’’ rays increases. However, this is impossible with absorbent walls
from a rigorous point of view. Is this an obstacle? The method consists in transforming a problem
in a bounded domain into a sum of problems in the unbounded domain. For the sake of
simplicity, let us work in the two-dimensional space (2D). The wave, harmonic, is cylindrical. The
image source Sj radiates the pressure

pðrjÞ ¼ fj
�i
4

H�
0 ðkrjÞ;

where rj is the distance from the image source at xj to the hearing point at x, k the wave number,
H�
0 the Hankel function of zero order. The term fj will be related to the image source later on.

With the NS first image sources, the pressure obtained at the receiver at x is

pðxÞ ¼
�i
4

XNS

j¼1

fjH
�
0 ðkrjÞ:

The contribution pðrjÞ of each ray has an amplitude and a phase which reveal not only the
propagation path but also the damping behaviour of the walls. The complex part of a reflected
wave has been determined analytically in the past by various authors [10,11]. This cornerstone of
the present discussion will be shown in a simple way and will not be analyzed as deeply as in the
references quoted.
Reflected acoustic pressure pref depends on the incident pressure pinc via a reflection coefficient

R such that pref=Rpinc. Given the damping acoustic behaviour of the walls through a local
reaction, coefficient R is derived by noting that relation (1) satisfied for each ray contributing
to the pressure is also satisfied for the sum of the rays. Moreover, the contribution of one ray,
written pray, at the wall is a local sum made up of the incident and the reflected pressures
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or pray=pinc+pref. Thus an R such that pref=Rpinc at x on the boundary must satisfy (1) with

@npincðxÞ þ @npref ðxÞ ¼ �
ik

Zr

ðpincðxÞ þ pref ðxÞÞ:

This description of the reflection qualified as specular leads to modelling errors. It is true that in
the case of a square domain with perfectly rigid walls, it has been verified that the solution of the
acoustic differential equations obtained by the modal theory or the finite element method, and
that obtained with the geometrical method are the same [12]. However, the differences between
the two solutions increase when the walls have a reactive behaviour (the impedance has an
imaginary part) and especially when the form of the cavity is irregular. Is it therefore possible to
define the validity domain of the specular reflection ? To this end, one ray is isolated by working in
the half-space, the boundary of which is of constant impedance value. Fig. 3 gives the
configuration. The operator is as follows:

HxpðxÞ ¼ �f dðx� xsÞ with xAO;

@npðxÞ ¼ �
ik

Zr

pðxÞ for xAG;

radiation at infinity:

8>>><
>>>:

ð4Þ

The wave radiated by an omnidirectional 2D point source is cylindrical. Acoustic pressure is made
up of a direct field pdirðxÞ and a reflected field pref ðxÞ: The direct field is obtained by the Green
function g(x,xS) of the unbounded space while the reflected field has to be determined

pðxÞ ¼ pdirðxÞ þ pref ðxÞ:

Concerning the specular reflection, precision can be increased by writing

p
spec
refl ðxÞ ¼ RðxP; yÞgðx; x0sÞ;

where xP is the impact point of the direct ray on the boundary, x
0
S the image source location, y the

angle of incidence of the direct ray on the boundary. The dependence of the pressure on x (and
also on the source location xS) is coherent with the impact point and the incidence angle resulting
from the receiver and the image source locations, i.e., from the source co-ordinates. In the present
situation where a cylindrical wave impinges to the boundary, the dynamic equation at the origin
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of (1) also leads to

Rcyl ¼
Zr cos y

H1ðk x-xSj jÞ
iH0ðk x-xSj jÞ � 1

Zr cos y
H1ðk x-xSj jÞ
iH0ðk x-xSj jÞ þ 1

: ð5Þ

The exact solution of operator (4) satisfies the integral representation of the Helmholtz equation

pex
ref ðxÞ ¼ gðx; x0SÞ � 2

ik

Zr

Z
G

gðx;x0Þpðx0Þ dx0:

The field reflected is thus due to the totally reflected incident wave corrected by a sum of scattered
waves on the whole damped boundary. In fact, it is known that in the latter term, the contribution
of the far part of the boundary is negligible.
The above equation makes it possible to quantify the approximation inherent to the specular

reflection. Indeed, let us write

pex
reflðxÞ ¼ RidðxÞgðx;x0sÞ;

where Rid(x) is identified from the exact solution leading to

RidðxÞ ¼ 1� 2
ik

Zr

R
G gðx; x0Þpðx0Þ dx0

gðx;x0sÞ
: ð6Þ

Comparison between RðxP; yÞ and the true value Rid(x) gives the answer sought. Fig. 4 presents
the configuration where the spatial dimensions are normalized versus the wavelength l to be free
of frequencies (i.e., the space variable is g ¼ r=l). Fig. 5 shows the discrepancies, i.e., the
modelling errors when working with the specular reflection coefficient. As a rule of thumb, the
reflected field is far from the specular reflection for oblique incidences when the receiving point is
near the wall (gR-0), and the difference decreases as the distance grows (in other words as the
frequency increases). This phenomenon has long been observed. More quantitavely, the specular
reflection induces significant errors for a distance of less than one wavelength as far as real
impedances are concerned. In that case the error is less than 12% for incidences less than 60�.
Fig. 5 emphasizes the detrimental influence of the reactive part of the impedance, essentially when
looking at the phase due to the reflection. It has been verified that this influence grows when the
imaginary part of the impedance increases. When going beyond this distance of one wavelength,
these phase errors diminish. It is not easy to go further in error quantification as the influence of
the impedance reactive part does not seem to vary according to any simple rule.
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The coefficient R associated with the specular reflexion gives access to the reflected pressure pref

as long as xS and xR are located inside the domain O: For the impedance values considered, from
among all the rays satisfying the configuration, those with y greater than 70� are largely
erroneous, the others being acceptable. Now, when xS belongs to the boundary, xR still being
inside O; coefficient R lacks sense except for the plane wave. Unfortunately, in the vicinity of a
point source (or lineic in 2D), the plane wave has no physical reality and, morover, pref also lacks
sense. What model can therefore describe the configuration?

5. Radiation of sources on walls

The previous section focused on sources (including the image sources) far from the boundaries.
That is not the only case dealt with in this study. The influence of the interface through the
integral

R
G1;2

G1;2ðx;x0Þ dx0 is also calculated taking into consideration point sources on either side
G1 and G2 of interface G: Section 3.2 emphasized that the Green functions G1;2ðx;x0Þ; each
associated with a domain isolated, satisfy an impedance relation at the interface, which is different
from the radiation at infinity and from the perfectly rigid reflection.
Here, within the framework of geometrical methods in acoustics, the problem of radiation in

the half-space of a source located at xS on the boundary, the impedance of which is of constant
value, is studied as a generic problem to gauge the approximations. As in the previous section,
source and receiver first keep their functions, but it will be shown later that here the reciprocity
has an interesting role to play. Let us thus suppose that the field radiated at a receiver depends
continuously on the source location when it tends towards the wall from inside the domain, i.e.,
when the distance, rs decreases ðrS-0Þ: This hypothesis makes it possible to extend the specular
reflection of Section 4 again in a simple way, without any deep analytical insight. Here incident
and reflected waves are no longer the correct words. Instead, the field p(x) is broken down into the
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direct component pdir(x), which does not recognize the existence of the boundary, and the
correction pcorr(x) due the boundary. Of course, the direct contribution arises from the Green
function gðx;xSÞ of the unbounded space. The other component can be assimilated to a reflection
with the form pcorrðxÞ ¼ RðxP; yÞ � gðx; x0SÞ; where jxS � x0S j-0 and jxP � xSj-0 since the
source, its image and the impact on the wall merge at the limit, resulting in

pcorrðxÞ ¼ lim
r-0

Rðy; rÞ � gðx;xSÞ:

The solution thus takes the form pðxÞ ¼ ð1þ limr-0 Rðy; rÞÞgðx; xSÞ written

pðxÞ ¼ DðyÞgðx; xSÞ

by defining DðyÞ; the specular directivity of the source on the wall. In the present situation, the
directivity could have been properly defined, if the cylindrical reflection coefficient Rcyl had been
meaningful at the wall. Instead, the plane wave approximation at the wall is accepted as leading to
the specular directivity

DðyÞ ¼ 1þ Rpl ¼ 2
Zr cos y

1þ Zr cos y
: ð7Þ

The problem under study has an exact solution, with which the specular directivity is compared.
The integral representation of the Helmholtz equation with the source at the wall is

pexðxÞ ¼ 2gðx; xSÞ � 2
ik

Zr

Z
G

gðx;x0Þpðx0Þ dx0:

According to this exact solution, the boundary effect cannot be qualified by only a local directivity
since the above equation shows a scattering from the whole boundary in the second term on the
right-hand side. As before, the exact solution gives an identified directivity coefficient now
compared with the specular directivity. Let us note pexðxÞ ¼ DidðxÞgðx;xSÞ with

DidðxÞ ¼ 2� 2
ik

Zr

R
G gðx; x0Þpðx0Þ dx0

gðx;xSÞ
: ð8Þ

The numerical comparison is carried out with the spatial dimension reduced to the wavelength.
The source at the walls leads to gS ¼ 0: Fig. 6 presents the results for two values of g (at the
receiver) and for incidences from 0� to 85�. The farther the receiver from the wall and the higher
the frequency, the more accurate the approximation. It is very efficient at the distance of one
wavelength from the wall for incidences ranging from 0� to 80�, here for real as well as for
complex impedances; however, the error is greater for large imaginary parts in the impedance. For
a real impedance, the approximation is worthwhile even at one-tenth of the wavelength as the
error is less than 10% for incidences less than 60�.
In half-space the specular directivity is truly satisfactory. Surprisingly, it gives better results

than the specular reflection. Until now no explanation has been found for this unexpected quality.
However, noticing that coefficient R leads to the total pressure p via pref while coefficient D leads
directly to p, the remark above could suggest that the exact contribution of pdir, the pressure due
to the direct ray, on p is more important than the erroneous contribution arising from R when xS

is located on the boundary.
In a cavity, the comparison using the reciprocity principle gives another reason for accepting

the approximation of the specular directivity. Indeed, the transfer between a point x inside the
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domain and a point x0 on the boundary is identical with Gðx;x0Þ or Gðx0;xÞ: In the numerical
experiment, the transfer function stems from the geometrical method using one of the two
following procedures:

* the hearing point is on the wall while the omnidirectional source is at x inside the cavity; the
result of the experiment is Gðx0; xÞ; working with all the image sources of x and

* the source x0 is on the wall and the hearing point in the domain; the source with its specular
directivity and the image sources with the specular reflection approximation lead to Gðx;x0Þ:

The walls are of real or complex impedance. Fig. 7 shows that both geometrical solutions are
identical. For curiosity’s sake, Fig. 7 also gives the amplitude of the pressure inside the domain
when the source is on the wall, but without taking into account the specular directivity. This
reciprocity experiment results in the specular directivity not bringing supplementary errors to the
solution obtained from the numerous reflected rays and conversely. Such a conclusion makes it
possible to reduce considerably the calculations needed to obtain the influence of the wall on the
receiver. Indeed, when x0 varies on G; for each x0 the calculation of its image sources must be
carried out and then the field calculated at the receiver x in O:When the source x in O is given, the
image sources have to be calculated only once and then the field calculated at each x0 on G: The
precision of the numerical value of the integral

R
G G1;2ðx; x0Þ dx0 depends on its discretization on

G1;2 and on the number of integration points. The work is thus carried out with all integration
points as receivers.
This section has thus shown that, with a source located on the absorbent boundary and the

receiver inside the domain, reciprocity gives the same results as those obtained with specular
directivity, the latter being understood as the limit of the specular reflection when the source inside
the domain tends towards the boundary. Provided some hypotheses are made, in particular about
angle y, the approximation of the directivity can be accepted. For practical reasons of
computation speed, reciprocity will be used here.
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6. The grazing ray in the contour integrands

It has been shown that a wall source radiating not very far by a ray, the incidence of which is
greater than 80� approximately, leads to a large error in the predicted pressure at a receiver within
the domain. The error increases with the incidence. What then can be expected from the terms of
inter- and autoinfluence present in the coupling problem dealt with here? Indeed they are of the
form

R
G1;2

G1;2ðx; x0Þ dx0; where x is also on G1;2 and the grazing ray of the Green kernel is
unavoidable.
Could it be possible to exploit the directivity coefficient already introduced? Let us note that

limy-90� DðyÞ ¼ 0: If this limit had been exact, it would have led to a zero contribution of the
grazing ray, while this is far from being the case when source and receiver are not very far apart.
More precisely, let us consider two points x and xS located on the absorbent wall of the infinite
half-space. The exact pressure results from the integral representation, written with the Green
function of the infinite space g(x,x0). Indeed the pressure at x on the boundary is expressed by

pexðxÞ ¼ 2gðx; xSÞ � 2
ik

Zr

Z
G

pðx0Þgðx;x0Þ dx0:

Points x0 on G distant from x hardly contribute to the final value and the discretization on a finite
part of G leads to

pexðxÞC2gðx; xSÞ � 2
ik

Zr

�
X

j

pðxjÞ
Z
Gj

gðx; x0Þ dx0:

The usual calculations result in the value of pex(x) due to a source at xS. Writing this pressure
pex(d,Zr) to emphasize that it depends on the distance d ¼ jx� xSj and on the impedance Zr,
and introducing an identified the so-called emission coefficient Midðd;ZrÞ such that

ARTICLE IN PRESS

500 600 700 800 900 1000
45

50

55

60

65

70

75

80

dB
 L

ev
el

Frequency (Hz)

500 600 700 800 900 1000
45

50

55

60

65

70

75

80

dB
 le

ve
l

Frequency (Hz)

Fig. 7. Reciprocity of responses between one point on the wall and another inside the cavity. Spectra results from the

source on the wall and the receiver in the domain with (——) and without (– – –) the directivity coefficient, and from the

same points, with roles inverted ( ). The points coordinates in Fig. 2 are (�0.733 0.733) on the wall and (0.547,
0.313) inside the domain.

T. Courtois, V. Martin / Journal of Sound and Vibration 270 (2004) 259–278272



pexðd;ZrÞ ¼ Midðd;ZrÞgðdÞ; i.e.,

Midðd;ZrÞC2� 2
ik

Zr

P
j pðxjÞ

R
Gj

gðx; x0Þ dx0

gðx; xSÞ
; ð9Þ

it becomes possible to compare Midðd;ZrÞ with the directivity coefficient DðyÞ for y ¼ 90�; i.e.,
zero. Fig. 8 shows the emission coefficient for a real and a complex value of Zr against the
normalized distance g ¼ d=l: It appears that limg-0 Midðg;ZrÞ ¼ 2 and limg-N Midðg;ZrÞ ¼ 0:
Thus, the limit value of zero for the directivity coefficient has a sense only for the receiver located
far from the source on the boundary. Fig. 8 also shows the rate of decrease to zero for Midðg;ZrÞ;
which depends on wall impedance and frequency. In those conditions, and given the a posteriori
(but expected) importance of the grazing ray in the final result of our problem, there was no choice
but to find an alternative to evaluating the inter- and autoinfluence integrals. Until now, the
grazing ray has been replaced by the exact value of the pressure radiated at a receiver by a source,
both on the boundary of an infinite half-space. A database taking into account the impedance of
the boundary, the distance between source and receiver and the frequency, must thus be made
before the coupling problem can be solved. The information is gathered in a vector consisting of
the emission coefficientMidðg;ZrÞ and, as written previously, the contribution of the grazing ray at
adimensional distance is pexðg;ZrÞ ¼ Midðg;ZrÞgðgÞ: For the autoinfluence where the Cauchy
integral derives from an analytical calculation, the multiplicative coefficient is the emission
coefficient.
The direct ray in a cavity where the walls are of finite dimensions is not of exactly the same

nature as that occurring on the infinite boundary of a half-space. However, a numerical
experiment where both source and receiver are on the same wall shows that the use of the latter
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solution greatly improves the result. In the test carried out in the cavity of Fig. 2, the distance
between source and receiver is voluntarily short (d=0.04m). The contribution of the direct or
grazing ray is extracted from the database, and the contribution of the other rays is obtained from
the specular reflection model, valid for a very large majority of them. In the very particular case
where one image source would be located on the prolongation of the boundary containing x and
x0, another grazing ray would occur. However, the image source far from the receiver contributes
nothing to the result. In Fig. 9, three graphs present three ways of calculating the ‘‘pressure’’
G1(x,x

0): the reference solution obtained using the finite element method, and the geometrical
solutions with and without the grazing ray (as defined in the half-space). The importance of this
ray appears fully here. The procedure proposed is of limited efficiency, essentially for walls with
complex impedances, but it nevertheless improves the result significantly, and will therefore be
used for approaching the contour integrals. How will this influence the final prediction?

7. Consequences of ray approximations on prediction in coupled cavities

The problem under study is described in Section 2. Acoustic pressure predictions result from the
Green functions G1 and G2 built with the geometrical method, i.e., with image sources and their
corresponding rays. The previous sections have shown why this approach is not rigorous and
made us aware of the errors accompanying some of the rays incorporated in the Green functions.
Given the numerous rays taken into account in solving the problem, do the errors on some of
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them affect the final result ? The reference solution comes from the finite element method in the
medium-frequency range. The source is located in O1: The radiated pressures are observed at two
points R1 and R2, each in a cavity. The simplest transfer matrix, the identity, reveals the continuity
of the pressures and of the normal velocities at the interface. The cavities’ boundaries, outside the
faces of the interface, are of the same impedance value.
In the first numerical experiment, the cavity boundaries reflect a large amount of the incident

pressures with a real impedance value of 9. Fig. 10 compares the predicted spectra at points R1
and R2, with the reference solution. In this case, where the spectra show large fluctuations
according to frequency, the trends remain. However, for frequencies between 500 and 800Hz at
point R1 and between 1000 and 1150Hz, for example, at point R2 the difference is more visible
than elsewhere. It could be that the points chosen simply happen to be the worst. To have another
idea of the quality of the results, Fig. 11 shows the comparison between the phases at a point on
the interface for the approximated ray method and the reference method. Indeed, we learned
during the numerical experiments that the results at the interface master the solution inside the
domains and that the phase plays an important role. Both curves show the same trends.
Fig. 10 could seem to indicate that the mean level is respected but not the fluctuations. By

increasing the damping at the boundaries, still with a real impedance, less fluctuations are
expected. Graphs of Fig. 12 result from an impedance value of 3, equivalent to an absorption
coefficient of 0.75 for a normal incidence. In fact, the predicted spectra are in good agreement
with those of reference as the discrepancies are quite always below 2 dB. Going further into the
dependence of the results on the impedance value, the numerical tests are now inspired by the case
of materials encountered in cars. It is known that their reactive part increases as the frequency
decreases. In the frequency range of interest the imaginary part of the impedance is quite high. In
Fig. 13 results show again that large fluctuations of the spectra are not well described by the
approximation method, but that the trends are still present.
The above comparisons have been given in very narrow frequency bands. However, the

question of the validity of the ray method in the medium-frequency range applies to hearing,
which is why Fig. 14 presents the results of Fig. 13, not the best obtained, by thirds of octave
frequency bands. The differences are of 2 dB at most. This constitutes our conclusion since it
provides an affirmative answer to the question asked in the introduction.

ARTICLE IN PRESS

500 1000 1500
45

50

55

60

65

70

75

80

dB
 le

ve
l

Frequency (Hz)
500 1000 1500

30

40

50

60

70

80

dB
 le

ve
l

Frequency (Hz)

Fig. 10. Sound level in each of the coupled cavities: comparison of the levels obtained by the ray (– – –) and finite

element (——) methods, for real impedance values of 9.

T. Courtois, V. Martin / Journal of Sound and Vibration 270 (2004) 259–278 275



8. Conclusion

The question asked concerns the consequences on predictive calculations of the approximations
associated with the geometrical methods used in acoustic coupling problems for medium
frequencies, with aural perception considerations in view. The answer brought by the paper is the
following: from among the configurations tested, the poorest results lead to a difference of 2 dB
between the spectrum obtained by the ray method and the spectrum obtained by a reference
method, the spectra being understood in thirds of octaves for frequencies from 500 to 1600Hz. It
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should certainly not be taken for granted that this would always be the case, but it has been shown
that such results are possible. It has also to be noted that these results can be further improved
where the walls are of weak reactive acoustic behaviour.
To obtain these performances, a major difficulty was removed in each cavity. This was the

grazing ray present in the inter and autoinfluence terms of the integral representation of the
coupling problem, representation that is said to be simplified because the Green kernel is built to
remove the double layer terms, leaving only the single layer terms. Indeed the grazing ray on the
interfaces is too far from satisfying the validity conditions of the specular reflection to be
acceptable, which is why a table of values obtained from the boundary of a half-space with the
same absorption as that of each side of the interface, i.e., as that of each cavity boundary, replaces
the grazing ray.
As for the validity domain of the specular reflection associated with the image source method, it

varies according to the point source located inside one of the coupled domains or on the interface,
the point of reception being inside the domain that ‘‘sees’’ the point source. When the source is
inside, the specular reflection model is quite sufficient noting that high frequencies, real
impedances and weak incidences are the most favourable cases, properties which have long been
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well known. When the source is on one side of the interface, a directivity model applied to the
direct ray results in a very acceptable solution for incidences less than 80� (the simple form given
to the directivity is a model as it leads to information in good agreement with a physical intuition,
despite the legitimate criticism about the plane wave). However, this remark is not definitive as the
solution depends on the frequency and on the value of the interface impedance. In general, short
wavelengths and real impedances are favourable. Nevertheless, it has emerged that the directivity
model for rays arising from sources on the interface is very appropriate for the present objectives.
To sum up, by describing the procedure chosen in such a way as to highlight its advantages and

drawbacks, the quantification of the approximations made when considering the specular
reflection, the directivity model and the grazing rays, has identified the latter as the cornerstone of
geometrical methods in coupling problems. As soon as x and x0 in G(x,x0) are located on the
interface, the grazing ray must be taken into account and this is inevitable when coupling is really
present. This difficulty being removed thanks to an erstaz, the global approach has proved to be
capable of dealing with complex problems in the medium-frequency range. Let us note that the
approach proposed could also be used to deal with non-convex domains. Indeed, within the
framework of this paper, they can be seen as coupled convex domains with identity interfaces. In
three-dimensional space, computation is also very rapid. The coupling experiment, currently being
carried out, is expected to play the role played here by the numerical solution of reference
obtained by the finite element method.
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